Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.426
Filtrar
1.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594637

RESUMO

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Assuntos
Vitis , Vinho , Vitis/metabolismo , Transcriptoma , Antocianinas/metabolismo , Microclima , Fazendas , Frutas , Vinho/análise
2.
Glob Chang Biol ; 30(3): e17214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494864

RESUMO

Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity-ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change.


Assuntos
Ecossistema , Microclima , Humanos , Biodiversidade , Plantas , Solo , Mudança Climática
3.
Parasit Vectors ; 17(1): 156, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532512

RESUMO

BACKGROUND: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Microclima , Aves , Mosquitos Vetores
4.
PLoS One ; 19(3): e0300378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551923

RESUMO

Understanding the topographic basis for microclimatic variation remains fundamental to predicting the site level effects of warming air temperatures. Quantifying diurnal fluctuation and seasonal extremes in relation to topography offers insight into the potential relationship between site level conditions and changes in regional climate. The present study investigated an annual understory temperature regime for 50 sites distributed across a topographically diverse area (>12 km2) comprised of mixed evergreen-deciduous woodland vegetation typical of California coastal ranges. We investigated the effect of topography and tree cover on site-to-site variation in near-surface temperatures using a combination of multiple linear regression and multivariate techniques. Sites in topographically depressed areas (e.g., valley bottoms) exhibited larger seasonal and diurnal variation. Elevation (at 10 m resolution) was found to be the primary driver of daily and seasonal variations, in addition to hillslope position, canopy cover and northness. The elevation effect on seasonal mean temperatures was inverted, reflecting large-scale cold-air pooling in the study region, with elevated minimum and mean temperature at higher elevations. Additionally, several of our sites showed considerable buffering (dampened diurnal and seasonal temperature fluctuations) compared to average regional conditions measured at an on-site weather station. Results from this study help inform efforts to extrapolate temperature records across large landscapes and have the potential to improve our ecological understanding of fine-scale seasonal climate variation in coastal range environments.


Assuntos
Clima , Microclima , Estações do Ano , Temperatura , Florestas , Ecossistema
5.
J Therm Biol ; 120: 103814, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38402729

RESUMO

Urbanization alters natural landscapes and creates unique challenges for urban wildlife. Similarly, the Urban Heat Island (UHI) effect can produce significantly elevated temperatures in urban areas, and we have a relatively poor understanding of how this will impact urban biodiversity. In particular, most studies quantify the UHI using broad-scale climate data rather than assessing microclimate temperatures actually experienced by organisms. In addition, studies often fail to address spatial and temporal complexities of the UHI. Here we examine the thermal microclimate and UHI experienced in the web of Western black widow spiders (Latrodectus hesperus), a medically-important, superabundant urban pest species found in cities across the Western region of North America. We do this using replicate urban and desert populations across an entire year to account for seasonal variation in the UHI, both within and between habitats. Our findings reveal a strong nighttime, but no daytime, UHI effect, with urban spider webs being 2-5 °C warmer than desert webs at night. This UHI effect is most prominent during the spring and least prominent in winter, suggesting that the UHI need not be most pronounced when temperatures are most elevated. Urban web temperatures varied among urban sites in the daytime, whereas desert web temperatures varied among desert sites in the nighttime. Finally, web temperature was significantly positively correlated with a spider's boldness, but showed no relationship with voracity towards prey, web size, or body condition. Understanding the complexities of each organism's thermal challenges, the "functional microclimate", is crucial for predicting the impacts of urbanization and climate change on urban biodiversity and ecosystem functioning.


Assuntos
Artrópodes , Viúva Negra , Animais , Temperatura , Temperatura Alta , Cidades , Microclima , Ecossistema
6.
Sci Rep ; 14(1): 3311, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332000

RESUMO

Understanding the influencing effect of meteorological factors and air pollutants in the campus plot and the relationship between them is an important topic in the planning and design of campus green space. The changes of pollutant concentrations and meteorological factors in campus green space have certain patterns and specific influencing factors. In this study, we selected four sample plots in Nanjing Forestry University as the research objects, and collected various environmental parameters of the four plots on July 25, 2022. The results showed that the main influences of meteorological factors are the type of the underlying surface of the site, the degree of plant canopy density and the shade coverage area of the building. These factors mainly have a great influence on the value of temperature and humidity. The comprehensive influencing factors can be concluded that the cooling and humidifying effect of the site is ranked as follows: forest > lawn > asphalt road > concrete Square. The main influencing factors of pollutants are: illumination, wind speed, temperature and relative humidity. Among them, illumination and temperature have a negative correlation with PM2.5, wind speed and relative humidity have a positive correlation with PM2.5. Our research shows that the adjustment of campus green space factors can reduce the concentration of pollutants by changing the meteorological factors.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/análise , Microclima , Monitoramento Ambiental/métodos , Estações do Ano , Poluentes Atmosféricos/análise , Conceitos Meteorológicos , China
7.
Environ Entomol ; 53(2): 277-287, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38334261

RESUMO

Cold winter temperatures govern the distribution and abundance of many insect species, but refugia that provide microclimates can moderate temperature-driven mortality. Winter temperatures have been implicated in limiting the survival and range of Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae; redbanded stink bug), an economically damaging invasive pest in the southeastern United States, but the role of refugia in overwintering survival of this pest is poorly understood. We conducted 2 studies in successive years to evaluate how leaf litter from hardwoods, pines, and soybeans modulate overwintering site selection and survival of P. guildinii. In the second-year study, we also quantified the buffering effect of the 3 leaf litter types compared to ambient conditions and assessed diapause. In the first-year study, we found that stink bugs preferentially dispersed into leaf litter compared with remaining unsheltered on bare soil; no clear preference among leaf litter types was found. In the second year, however, no clear differences were found among leaf litter types and bare soil. Means of daily minimum temperatures under leaf litter were at least 3.0 ±â€…0.9 °C (SE) warmer and generally less variable than ambient conditions. While high mortality in both studies illustrates that more work must be done to fully understand overwintering survival, limited survival through potentially lethal conditions in the first-year study nonetheless emphasizes the possibility of populations persisting and rebounding in the following spring. Furthermore, our study highlights the potential for stink bugs to persist in areas with lethal ambient temperatures by dispersing into widely available substrates.


Assuntos
Soja , Heterópteros , Animais , Microclima , Temperatura Baixa , Solo
8.
Glob Chang Biol ; 30(2): e17196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404209

RESUMO

Cliffs are remarkable environments that enable the existence of microclimates. These small, isolated sites, decoupled from the regional macroclimate, play a significant role in maintaining species biodiversity, particularly in topographically homogeneous landscapes. Our study investigated the microclimate of south-exposed forests situated at the edge of sandstone cliffs in the western part of the North Alpine Foreland Basin in Switzerland and its role in local forest community composition. Using direct measurements from data loggers, as well as vegetation analyses, it was possible to quantify the microclimate of the cliff-edge forests and compare it with that of the surrounding forests. Our results highlighted the significant xerothermic and more variable nature of the cliff-edge forest microclimate, with a mean soil temperature up to 3.72°C warmer in the summer, higher annual (+28%) and daily (+250%) amplitudes of soil temperature, which frequently expose vegetation to extreme temperatures, and an 83% higher soil drying rate. These differences have a distinct influence on forest communities: cliff-edge forests are significantly different from surrounding forests. The site particularities of cliff edges support the presence of locally rare species and forest types, particularly of Scots pine. Cliff edges must therefore be considered microrefugia with a high conservation value for both xerothermic species and flora adapted to more continental climates. Moreover, the microclimate of cliff-edge forests could resemble the future climate in many ways. We argue that these small areas, which are already experiencing the future climate, can be seen as natural laboratories to better answer the following question: what will our forests look like in a few decades with accelerated climate change?


Les falaises sont des milieux remarquables qui permettent l'existence de microclimats. Ces petites surfaces, aux conditions éloignées du climat régional, jouent un rôle important pour la biodiversité, en particulier dans les paysages topographiquement homogènes. Notre étude a porté sur le microclimat de forêts exposées au sud, situées au bord de falaises de molasse, sur le plateau suisse, et sur son rôle dans la composition de la communauté végétale locale. En utilisant des mesures directes provenant d'enregistreurs automatiques de données, ainsi que des analyses de la végétation, il a été possible de quantifier le microclimat des forêts de bord de falaise et de le comparer à celui des forêts environnantes. Nos résultats ont mis en évidence la nature significativement xérothermique et plus variable du microclimat des forêts de bord de falaise, avec une température moyenne du sol jusqu'à 3.72°C plus élevée en été, des amplitudes accrues annuelles (+28%) et journalières (+250%) de la température du sol, qui exposent fréquemment la végétation à des températures extrêmes, et un taux d'assèchement du sol 83% plus élevé. Ces différences ont une influence marquée sur les communautés forestières: les forêts de bord de falaise sont très différentes des forêts environnantes. Elles permettent la présence d'espèces et de types de forêts localement rares, notamment des pinèdes. Les bords de falaise doivent donc être considérés comme des microrefuges à haute valeur de conservation pour les espèces xérothermiques et la flore adaptée à des climats plus continentaux. En outre, le microclimat des forêts de bord de falaise pourrait ressembler au climat futur à bien des égards. Nous soutenons que ces petites zones, qui connaissent déjà le climat futur, peuvent être considérées comme des laboratoires naturels permettant de mieux répondre à la question suivante: à quoi ressembleront nos forêts dans quelques décennies, suite aux changements climatiques?


Assuntos
Mudança Climática , Árvores , Florestas , Biodiversidade , Microclima , Solo
9.
Sci Total Environ ; 918: 170531, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309368

RESUMO

Coppicing is one of the oldest silvicultural practices and is still widely applied to produce renewable energy from broadleaf forests. However, the consequences on microclimate and understorey vegetation are still poorly understood, especially in Mediterranean oak forests. With the ongoing changes in the climate system and global biodiversity loss, a better understanding of how the forest temperature buffering capacity and below-canopy plant community are impacted by coppicing is crucial. Here we quantify microclimate and understorey vegetation changes in adjacent ancient coppice-with-standards and high forest stands dominated by oaks in Italy, where these systems have been applied for a long time. Air and soil temperatures were recorded for 2.5 years, and nested vegetation plots were used to analyse coppicing effects on species composition, taxonomic, phylogenetic, and functional diversity. Coppicing significantly reduced the forest temperature buffering capacity. The mean of the daily maximum temperatures over the entire period was 1.45 °C higher in the coppiced sites, whereas the mean of the daily minimum temperatures was 0.62 °C lower than in the high forest. Coppicing increased understorey species richness by favouring generalist taxa, but significantly decreased the proportion of forest specialists. The understorey community in coppiced forests consisted of more warm-adapted species. Moreover, coppicing also led to a loss of phylogenetic evenness and to shifts in diversity and community weighted mean Leaf Dry Matter content, pointing to habitat filtering and acclimation processes. In sum, we show that coppicing affects microclimate and understory vegetation in a direction that can exacerbate the effects of climate change, negatively affecting the oak forest specialist flora and its phylogenetic evenness.


Assuntos
Quercus , Microclima , Filogenia , Florestas , Ecossistema , Biodiversidade
11.
Int J Biometeorol ; 68(4): 675-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180571

RESUMO

This study aims to evaluate agreement among subjective thermal comfort, thermal sensation, thermal perception, and thermal tolerance indices, according to pedestrians in downtown Santa Maria, southern Brazil, which has a humid subtropical climate (Cfa). Between August 2015 and July 2016 (three periods), 1728 questionnaires were applied. Evaluation of the dependence of statistical variables was based on gender and age, at three periods of time: August 2015 (864 respondents), January 2016 (432 respondents), and July 2016 (432 respondents). Statistical evaluation was based on Pearson's chi-square test using RStudio software, and a significance level (α) of 5% for thermal comfort, thermal sensation, thermal preference, and thermal tolerance was used. Results indicated that age and gender affect the relationship between the variables. Thermal comfort and thermal tolerance presented the best correlation and coherence, regardless of age or gender. This study contributes to knowledge on the local microclimate and can contribute to urban planning to implement strategies that improve pedestrians' thermal comfort.


Assuntos
Pedestres , Humanos , Clima , Microclima , Sensação Térmica , Percepção , Cidades
12.
Sci Total Environ ; 917: 170514, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296074

RESUMO

The health of intra-urban population in modern megacities relies largely on the biosafety within the microclimate of subway system, which can be vulnerable to epidemical challenges brought by virus-laden bioaerosols under varying factors. The literature has yet to address the association between the exposure risks to infectious pathogens and the dynamic changes of boundary conditions in this densely populated microclimate. This study aims at characterizing the bioaerosol dispersion, evaluating the exposure risks under various train arrival scenarios and hazard releasing positions in a real-world double-decker subway station. The results provide the evidence for the dominating airflow pattern, bioaerosols dispersion behaviors, exposure risk, and evacuation guidance in a representative microclimate of mega-cities. The tunnel effects of nearby pedestrian passageways are found to be dominating the airflow pattern, leading to the discharging of airborne bioaerosols. At least 60 % increasing of discharging rate of bioaerosol is attributed to the arrival of one or two trains at the subway platform compared with the scenario with no train arriving. Results from risk assessment with improved Wells-Riley model estimate 57.62 % of maximum infectivity probability with no train arriving. Large areas near the source at the platform floor still cannot be considered safe within 20 min. For the other two scenarios where trains arrive at the platform, the maximum probability of infection is below 5 %. Moreover, the majority of train carriages can be regarded as safe zones, as the ventilation across the screen door are mostly directed towards the platform. Additionally, releasing the bioaerosols at the platform floor poses the most severe threats to human health, and the corresponding evacuation strategies are suggested. These findings offer practical guidance for the design of the intra-urban microclimate, reinforcing the need for exposure reduction device or contingency plans, and providing potential evacuation strategy towards improved health outcomes.


Assuntos
Poluentes Atmosféricos , Ferrovias , Humanos , Poluentes Atmosféricos/análise , Cidades , Microclima , Aerossóis/análise , Microbiologia do Ar
13.
Environ Sci Pollut Res Int ; 31(8): 12257-12270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227262

RESUMO

Although the abundance, survival, and pollination performance of honeybees are sensitive to changes in habitat and climate conditions, the processes by which these effects are transmitted to honey production and interact with beekeeping management are not completely understood. Climate change, habitat degradation, and beekeeping management affect honey yields, and may also interact among themselves resulting in indirect effects across spatial scales. We conducted a 2-year, multi-scale study on Chiloe Island (northern Patagonia), where we evaluated the most relevant environmental and management drivers of honey produced by stationary beekeepers. We found that the effects of microclimate, habitat, and management variables changed with the spatial scale. Among the environmental variables, minimum temperature, and cover of the invasive shrub, gorse (Ulex europaeus) had the strongest detrimental impacts on honey production at spatial scales finer than 4 km. Specialized beekeepers who adopted conventional beekeeping and had more mother colonies were more productive. Mean and minimum temperatures interacted with the percentage of mother colonies, urban cover, and beekeeping income. The gorse cover increased by the combination of high temperatures and the expansion of urban lands, while landscape attributes, such as Eucalyptus plantation cover, influenced beekeeping management. Results suggest that higher temperatures change the available forage or cause thermal stress to honeybees, while invasive shrubs are indicators of degraded habitats. Climate change and habitat degradation are two interrelated environmental phenomena whose effects on beekeeping can be mitigated through adaptive management and habitat restoration.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Microclima , Criação de Abelhas/métodos , Ecossistema , Polinização
14.
Sci Total Environ ; 916: 170258, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246378

RESUMO

In macroecology, shifting from coarse- to local-scale explanatory factors is crucial for understanding how global change impacts functional diversity (FD). Plants possess diverse traits allowing them to differentially respond across a spectrum of environmental conditions. We aim to assess how macro- to microclimate, stand-scale measured soil properties, forest structure, and management type, influence forest understorey FD at the macroecological scale. Our study covers Italian forests, using thirteen predictors categorized into climate, soil, forest structure, and management. We analyzed five traits (i.e., specific leaf area, plant size, seed mass, belowground bud bank size, and clonal lateral spread) capturing independent functional dimensions to calculate the standardized effect size of functional diversity (SES-FD) for all traits (multi-trait) and for single traits. Multiple regression models were applied to assess the effect of predictors on SES-FD. We revealed that climate, soil, and forest structure significantly drive SES-FD of specific leaf area, plant size, seed mass, and bud bank. Forest management had a limited effect. However, differences emerged between herbaceous and woody growth forms of the understorey layer, with herbaceous species mainly responding to climate and soil features, while woody species were mainly affected by forest structure. Future warmer and more seasonal climate could reduce the diversity of resource economics, plant size, and persistence strategies of the forest understorey. Soil eutrophication and acidification may impact the diversity of regeneration strategies; canopy closure affects the diversity of above- and belowground traits, with a larger effect on woody species. Multifunctional approaches are vital to disentangle the effect of global changes on functional diversity since independent functional specialization axes are modulated by different drivers.


Assuntos
Florestas , Solo , Clima , Plantas , Microclima
15.
Sci Total Environ ; 912: 169133, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070551

RESUMO

Downed woody debris (DWD) plays an important role as regulator of nutrient and carbon (C) cycling in forests, accounting for up to the 20 % of the total C stocks in primary forests. DWD persistence is highly influenced by microbial decomposition, which is determined by various environmental factors, including fluctuations in temperature and moisture, as well as in intrinsic DWD properties determined by species, diameter, or decay classes (DCs). The relative importance of these different drivers, as well as their interactions, remains largely unknown. Moreover, the importance of DWD for C cycling in virgin forests remains poorly understood, due to their scarcity and poor accessibility. To address this research gap, we conducted a study on DWD respiration (RDWD), in a temperate virgin forest dominated by European beech and silver fir. Our investigation analysed the correlation between RDWD of these two dominant tree species and the seasonal changes in climate (temperature and moisture), considering other intrinsic DWD traits such as DCs (1, 2 and 4) and diameters (1, 10 and 25 cm). As anticipated, RDWD (normalized per gram of dry DWD) increased with air temperature. Surprisingly, DWD diameter also had a strong positive correlation with RDWD. Nonetheless, the sensitivity to both variables and other intrinsic traits (DC and density) was greatly modulated by the species. On the contrary, water content, which exhibited a considerable spatial variation, had an overall negative effect on RDWD. Virgin forests are generally seen as ineffective C sinks due to their lack of net productivity and high respiration and nutrient turnover. However, the rates of RDWD in this virgin forest were significantly lower than those previously estimated for managed forests. This suggests that DWD in virgin forests may be buffering forest CO2 emissions to the atmosphere more than previously thought.


Assuntos
Carbono , Microclima , Florestas , Madeira , Árvores
16.
J Environ Manage ; 351: 119762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081083

RESUMO

Cave heritage is often threatened by tourism or even scientific activities, which can lead to irreversible deterioration. We present a preventive conservation monitoring protocol to protect caves with rock art, focusing on La Garma Cave (Spain), a World Heritage Site with valuable archaeological materials and Palaeolithic paintings. This study assessed the suitability of the cave for tourist use through continuous microclimate and airborne particles monitoring, biofilm analysis, aerobiological monitoring and experimental visits. Our findings indicate several factors that make it inadvisable to adapt the cave for tourist use. Human presence and transit within the cave cause cumulative effects on the temperature of environmentally very stable and fragile sectors and significant resuspension of particles from the cave sediments. These environmental perturbations represent severe impacts as they affect the natural aerodynamic control of airborne particles and determine bacterial dispersal throughout the cave. This monitoring protocol provides part of the evidence to design strategies for sustainable cave management.


Assuntos
Cavernas , Pinturas , Humanos , Cavernas/microbiologia , Espanha , Microclima , Bactérias
17.
Bioresour Technol ; 394: 130209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135224

RESUMO

Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.


Assuntos
Gases de Efeito Estufa , Microalgas , Fotobiorreatores , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Microclima , Biomassa
18.
Intensive Crit Care Nurs ; 81: 103604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38155050

RESUMO

OBJECTIVE: To determine the association between body morphology, sacral skin microclimate and their impact on the development and risk of pressure injuries among patients in an intensive care unit. METHODOLOGY: A prospective observational exploratory study was conducted over 30 weeks. Repeat study observations occurred multiple times a week for 28 days or until discharge. Participant inclusion criteria were ≥ 18 years of age, expected intensive care length of stay > 24 h and intact skin over the sacrum region. SETTING: The study was conducted in a 36-bed intensive care unit of a major metropolitan public hospital in Queensland, Australia. OUTCOME MEASURES: Pressure injuries were staged and independently verified according to the international pressure injury classification system. Pressure injury risk was determined by the Braden scale score and subepidermal oedema, using a subepidermal moisture scanner at the sacrum. RESULTS: Of the 93 participants recruited, an inverted triangle body shape (p =.049), a BMI > 25 kg/m2 (p =.008), a standard foam mattress type (p =.017) and increased length of stay (p <.001) were associated with an increased pressure injury risk according to subepidermal oedema. Participants with increased sacral skin temperature (p <.001), mechanical ventilation (p <.001), vasoactive drugs administered (p =.003), increased sequential organ failure assessment score (p =.047), neurovascular diagnosis (p =.031) and increased length of stay (p =.027) were associated with increased pressure injury risk according to the Braden scale score. CONCLUSION: Body morphology and skin microclimate are associated with pressure injury risk during critical illness. IMPLICATIONS FOR CLINICAL PRACTICE: Subepidermal oedema was associated with a patient's shape, body mass index and mattress type, factors that directly influence the pressure loading and the skin, whereas the Braden scale was associated with sacral temperature and clinical measures of critical illness. Consideration of body morphology and skin microclimate in pressure injury risk assessment could lead to more specific prevention strategies targeting high risk patients.


Assuntos
Lesão por Pressão , Humanos , Estado Terminal , Edema , Unidades de Terapia Intensiva , Microclima , Lesão por Pressão/epidemiologia , Lesão por Pressão/etiologia , Estudos Prospectivos , Sacro , Adolescente , Adulto
19.
J Therm Biol ; 119: 103779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159465

RESUMO

Tree-induced cooling benefits are associated with various factors, such as canopy morphology, surface cover, and environmental configuration. However, limited studies have analyzed the sensitivity of tree-induced cooling effects to the combination of such factors. Most studies have focused on 1.5-m cooling performance, and few studies on the variability of the under-tree vertical cooling performance. Therefore, this study aims to investigate the vertical cooling performance of different combinations of trees and surface covers. The study was completed in Chongqing, China, with field experiments capturing vertical air temperature and wind speed at 0.5, 1.0, 1.5, 2.0 and 2.5 m under two typical combinations of "tree + grass" (ComA) and "tree + shrubs" (ComB), and capturing 1.5 m microclimatic environments of a control group with hard pavement without tree shade (REF). The results show that at an average ambient temperature of 33 °C, the maximum air-cooling temperatures for ComA and ComB were 2.46 °C and 1.78 °C, respectively. An increase in the ambient temperature corresponded to a decrease in the cooling effect difference between ComA and ComB. ComA had a maximum vertical temperature difference of 1.01 °C between H1.5m and H2.0m. Between H2.5m and H2.0m, the maximum vertical temperature difference for ComB was 1.64 °C. This study explored the changing patterns of under-tree vertical temperatures under different tree and surface cover combinations, conducive to clarifying the key elements affecting tree cooling performance. The results have implications for accurate thermal comfort assessments and provide a theoretical basis for fine-tuning the design of under-tree spaces.


Assuntos
Temperatura Baixa , Árvores , Temperatura , Microclima , Vento , Cidades
20.
Ecol Lett ; 26(12): 2043-2055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788337

RESUMO

Species distributions are conventionally modelled using coarse-grained macroclimate data measured in open areas, potentially leading to biased predictions since most terrestrial species reside in the shade of trees. For forest plant species across Europe, we compared conventional macroclimate-based species distribution models (SDMs) with models corrected for forest microclimate buffering. We show that microclimate-based SDMs at high spatial resolution outperformed models using macroclimate and microclimate data at coarser resolution. Additionally, macroclimate-based models introduced a systematic bias in modelled species response curves, which could result in erroneous range shift predictions. Critically important for conservation science, these models were unable to identify warm and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of climate change, particularly given the growing policy and management focus on the conservation of refugia worldwide.


Assuntos
Florestas , Microclima , Árvores , Plantas , Biodiversidade , Mudança Climática , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...